Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Microsc ; 294(3): 411-419, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700841

RESUMO

Centralised core facilities have evolved into vital components of life science research, transitioning from a primary focus on centralising equipment to ensuring access to technology experts across all facets of an experimental workflow. Herein, we put forward a seven-pillar model to define what a core facility needs to meet its overarching goal of facilitating research. The seven equally weighted pillars are Technology, Core Facility Team, Training, Career Tracks, Technical Support, Community and Transparency. These seven pillars stand on a solid foundation of cultural, operational and framework policies including the elements of transparent and stable funding strategies, modern human resources support, progressive facility leadership and management as well as clear institute strategies and policies. This foundation, among other things, ensures a tight alignment of the core facilities to the vision and mission of the institute. To future-proof core facilities, it is crucial to foster all seven of these pillars, particularly focusing on newly identified pillars such as career tracks, thus enabling core facilities to continue supporting research and catalysing scientific advancement. Lay abstract: In research, there is a growing trend to bring advanced, high-performance equipment together into a centralised location. This is done to streamline how the equipment purchase is financed, how the equipment is maintained, and to enable an easier approach for research scientists to access these tools in a location that is supported by a team of technology experts who can help scientists use the equipment. These centralised equipment centres are called Core Facilities. The core facility model is relatively new in science and it requires an adapted approach to how core facilities are built and managed. In this paper, we put forward a seven-pillar model of the important supporting elements of core facilities. These supporting elements are: Technology (the instruments themselves), Core Facility Team (the technology experts who operate the instruments), Training (of the staff and research community), Career Tracks (for the core facility staff), Technical Support (the process of providing help to apply the technology to a scientific question), Community (of research scientist, technology experts and developers) and Transparency (of how the core facility works and the costs associated with using the service). These pillars stand on the bigger foundation of clear policies, guidelines, and leadership approaches at the institutional level. With a focus on these elements, the authors feel core facilities will be well positioned to support scientific discovery in the future.


Assuntos
Pesquisa Biomédica , Humanos
2.
J Microsc ; 294(3): 276-294, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656474

RESUMO

Modern life science research is a collaborative effort. Few research groups can single-handedly support the necessary equipment, expertise and personnel needed for the ever-expanding portfolio of technologies that are required across multiple disciplines in today's life science endeavours. Thus, research institutes are increasingly setting up scientific core facilities to provide access and specialised support for cutting-edge technologies. Maintaining the momentum needed to carry out leading research while ensuring high-quality daily operations is an ongoing challenge, regardless of the resources allocated to establish such facilities. Here, we outline and discuss the range of activities required to keep things running once a scientific imaging core facility has been established. These include managing a wide range of equipment and users, handling repairs and service contracts, planning for equipment upgrades, renewals, or decommissioning, and continuously upskilling while balancing innovation and consolidation.


Assuntos
Disciplinas das Ciências Biológicas , Disciplinas das Ciências Biológicas/métodos
4.
Front Immunol ; 15: 1323409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352874

RESUMO

Background: Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting memory and cognition. The disease is accompanied by an abnormal deposition of ß-amyloid plaques in the brain that contributes to neurodegeneration and is known to induce glial inflammation. Studies in the APP/PS1 mouse model of ß-amyloid-induced neuropathology have suggested a role for inflammasome activation in ß-amyloid-induced neuroinflammation and neuropathology. Methods: Here, we evaluated the in vivo role of microglia-selective and full body inflammasome signalling in several mouse models of ß-amyloid-induced AD neuropathology. Results: Microglia-specific deletion of the inflammasome regulator A20 and inflammasome effector protease caspase-1 in the AppNL-G-F and APP/PS1 models failed to identify a prominent role for microglial inflammasome signalling in ß-amyloid-induced neuropathology. Moreover, global inflammasome inactivation through respectively full body deletion of caspases 1 and 11 in AppNL-G-F mice and Nlrp3 deletion in APP/PS1 mice also failed to modulate amyloid pathology and disease progression. In agreement, single-cell RNA sequencing did not reveal an important role for Nlrp3 signalling in driving microglial activation and the transition into disease-associated states, both during homeostasis and upon amyloid pathology. Conclusion: Collectively, these results question a generalizable role for inflammasome activation in preclinical amyloid-only models of neuroinflammation.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Doenças Neuroinflamatórias , Camundongos Transgênicos , Amiloide , Proteínas Amiloidogênicas
5.
Methods Cell Biol ; 177: 33-54, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37451773

RESUMO

Serial Block Face Scanning Electron Microscopy (SBF-SEM) is one of several volume electron microscopy (vEM) techniques whose purpose is to reveal the nanostructure of cells and tissues in three dimensions. As one of the earliest, and possibly most widely adopted of the disruptive vEM techniques there have been hundreds of publications using the method, although very few comparative studies of specimen preparation parameters. While some studies have focused on staining and specimen acquisition no comparison of resin embedding has yet been conducted. To this end we have surveyed the SBF-SEM literature to determine which resins are commonly used and compared them in both cellular and fixed tissue samples in an attempt to optimize sample preparation for: effectiveness of resin infiltration, resistance to charging and beam damage and clarity of image in the resulting data set. Here we present the results and discuss the various factors that go into optimizing specimen preparation for SBF-SEM.


Assuntos
Imageamento Tridimensional , Microscopia Eletrônica de Volume , Microscopia Eletrônica de Varredura , Imageamento Tridimensional/métodos , Manejo de Espécimes/métodos
7.
Cell ; 185(2): 379-396.e38, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35021063

RESUMO

The liver is the largest solid organ in the body, yet it remains incompletely characterized. Here we present a spatial proteogenomic atlas of the healthy and obese human and murine liver combining single-cell CITE-seq, single-nuclei sequencing, spatial transcriptomics, and spatial proteomics. By integrating these multi-omic datasets, we provide validated strategies to reliably discriminate and localize all hepatic cells, including a population of lipid-associated macrophages (LAMs) at the bile ducts. We then align this atlas across seven species, revealing the conserved program of bona fide Kupffer cells and LAMs. We also uncover the respective spatially resolved cellular niches of these macrophages and the microenvironmental circuits driving their unique transcriptomic identities. We demonstrate that LAMs are induced by local lipid exposure, leading to their induction in steatotic regions of the murine and human liver, while Kupffer cell development crucially depends on their cross-talk with hepatic stellate cells via the evolutionarily conserved ALK1-BMP9/10 axis.


Assuntos
Evolução Biológica , Hepatócitos/metabolismo , Macrófagos/metabolismo , Proteogenômica , Animais , Núcleo Celular/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Homeostase , Humanos , Células de Kupffer/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Lipídeos/química , Fígado/metabolismo , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células Mieloides/metabolismo , Obesidade/patologia , Proteoma/metabolismo , Transdução de Sinais , Transcriptoma/genética
8.
Acta Neuropathol Commun ; 9(1): 163, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620254

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by the accumulation of amyloid ß (Aß) and neurofibrillary tangles. The last decade, it became increasingly clear that neuroinflammation plays a key role in both the initiation and progression of AD. Moreover, also the presence of peripheral inflammation has been extensively documented. However, it is still ambiguous whether this observed inflammation is cause or consequence of AD pathogenesis. Recently, this has been studied using amyloid precursor protein (APP) overexpression mouse models of AD. However, the findings might be confounded by APP-overexpression artifacts. Here, we investigated the effect of low-grade peripheral inflammation in the APP knock-in (AppNL-G-F) mouse model. This revealed that low-grade peripheral inflammation affects (1) microglia characteristics, (2) blood-cerebrospinal fluid barrier integrity, (3) peripheral immune cell infiltration and (4) Aß deposition in the brain. Next, we identified mechanisms that might cause this effect on AD pathology, more precisely Aß efflux, persistent microglial activation and insufficient Aß clearance, neuronal dysfunction and promotion of Aß aggregation. Our results further strengthen the believe that even low-grade peripheral inflammation has detrimental effects on AD progression and may further reinforce the idea to modulate peripheral inflammation as a therapeutic strategy for AD.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Inflamação/imunologia , Inflamação/patologia , Precursor de Proteína beta-Amiloide , Animais , Encéfalo/imunologia , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos
9.
J Microsc ; 284(2): 97-102, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34476818

RESUMO

Correlative light and electron microscopy is a valuable tool to image samples across resolution scales and link data on structure and function. While studies using this technique have been available since the 1960s, recent developments have enabled applying these workflows to large volumes of cells and tissues. Much of the development in this area has been facilitated through the collaborative efforts of microscopists and commercial companies to bring the methods, hardware and image processing technologies needed into laboratories and core imaging facilities. This is a prime example of how what was once a niche area can be brought into the mainstream of microscopy by the efforts of imaging pioneers who push the boundaries of possibility.

10.
J Cereb Blood Flow Metab ; 41(9): 2185-2200, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33970018

RESUMO

Pericytes and endothelial cells share membranous interdigitations called "peg-and-socket" interactions that facilitate their adhesion and biochemical crosstalk during vascular homeostasis. However, the morphology and distribution of these ultrastructures have remained elusive. Using a combination of 3D electron microscopy techniques, we examined peg-and-socket interactions in mouse brain capillaries. We found that pegs extending from pericytes to endothelial cells were morphologically diverse, exhibiting claw-like morphologies at the edge of the cell and bouton-shaped swellings away from the edge. Reciprocal endothelial pegs projecting into pericytes were less abundant and appeared as larger columnar protuberances. A large-scale 3D EM data set revealed enrichment of both pericyte and endothelial pegs around pericyte somata. The ratio of pericyte versus endothelial pegs was conserved among the pericytes examined, but total peg abundance was heterogeneous across cells. These data show considerable investment between pericytes and endothelial cells, and provide morphological evidence for pericyte somata as sites of enriched physical and biochemical interaction.


Assuntos
Encéfalo/ultraestrutura , Células Endoteliais/metabolismo , Microscopia Eletrônica de Varredura/métodos , Pericitos/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
11.
J Biomol Tech ; 32(1): 1-9, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33880077

RESUMO

Core facilities (CFs) provide a centralised access to costly equipment, scientific expertise, experimental design, day-to-day technical support and training of users. CFs have a tremendous impact on research outputs, skills and educational agendas, increasing the competencies of staff, researchers and students. However, the rapid development of new technologies and methodologies for the life sciences requires fast adaptation and development of existing core facilities and their technical and scientific staff. Given the scarcity of well-defined CF career paths, CF staff positions are typically filled by people having followed either academic or technical tracks. Each academic institution follows different policies and often fails to adequately recognize the merits of CF personnel and to support their training efficiently. Thus, the Core Technologies for Life Science association (CTLS), through the Training working group, has conducted an anonymous online survey to assess the training needs of CF personnel, as well as to identify common characteristics and challenges in this relatively new and dynamic career type. 275 individuals, including core managers and directors, technicians, technologists and administrators, participated in the survey. The survey was divided into 2 sections; the first, applied to all respondents, and the second, specifically targeted core management issues. Training needs in technological areas, financial and soft skills, management and administrative issues were surveyed as well. The lack of clarity and consistency regarding established career paths for CF professionals was evident from the second part of the survey, highlighting geographical or cultural differences. Gender balance was achieved and the distribution was always taken into account. The results of this survey highlight a need to develop better training resources for CF staff, to improve their recognition within academic institutions, and to establish a recognized career pathway.


Assuntos
Currículo , Universidades , Humanos , Inquéritos e Questionários
12.
Immunity ; 54(1): 68-83.e6, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33238133

RESUMO

While antibiotics are intended to specifically target bacteria, most are known to affect host cell physiology. In addition, some antibiotic classes are reported as immunosuppressive for reasons that remain unclear. Here, we show that Linezolid, a ribosomal-targeting antibiotic (RAbo), effectively blocked the course of a T cell-mediated autoimmune disease. Linezolid and other RAbos were strong inhibitors of T helper-17 cell effector function in vitro, showing that this effect was independent of their antibiotic activity. Perturbing mitochondrial translation in differentiating T cells, either with RAbos or through the inhibition of mitochondrial elongation factor G1 (mEF-G1) progressively compromised the integrity of the electron transport chain. Ultimately, this led to deficient oxidative phosphorylation, diminishing nicotinamide adenine dinucleotide concentrations and impairing cytokine production in differentiating T cells. In accordance, mice lacking mEF-G1 in T cells were protected from experimental autoimmune encephalomyelitis, demonstrating that this pathway is crucial in maintaining T cell function and pathogenicity.


Assuntos
Antibacterianos/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Linezolida/uso terapêutico , Mitocôndrias/metabolismo , Peptídeos Cíclicos/uso terapêutico , Ribossomos/metabolismo , Células Th17/fisiologia , Animais , Autoimunidade/efeitos dos fármacos , Diferenciação Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Terapia de Alvo Molecular , Esclerose Múltipla/tratamento farmacológico , NAD/metabolismo , Fosforilação Oxidativa , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo
13.
J Biomol Tech ; 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33304201

RESUMO

Core facilities (CFs) provide a centralised access to costly equipment, scientific expertise, experimental design, day-to-day technical support and training of users. CFs have a tremendous impact on research outputs, skills and educational agendas, increasing the competencies of staff, researchers and students. However, the rapid development of new technologies and methodologies for the life sciences requires fast adaptation and development of existing core facilities and their technical and scientific staff. Given the scarcity of well-defined CF career paths, CF staff positions are typically filled by people having followed either academic or technical tracks. Each academic institution follows different policies and often fails to adequately recognize the merits of CF personnel and to support their training efficiently. Thus, the Core Technologies for Life Science association (CTLS), through the Training working group, has conducted an anonymous online survey to assess the training needs of CF personnel, as well as to identify common characteristics and challenges in this relatively new and dynamic career type. 275 individuals, including core managers and directors, technicians, technologists and administrators, participated in the survey. The survey was divided into 2 sections; the first, applied to all respondents, and the second, specifically targeted core management issues. Training needs in technological areas, financial and soft skills, management and administrative issues were surveyed as well. The lack of clarity and consistency regarding established career paths for CF professionals was evident from the second part of the survey, highlighting geographical or cultural differences. Gender balance was achieved and the distribution was always taken into account. The results of this survey highlight a need to develop better training resources for CF staff, to improve their recognition within academic institutions, and to establish a recognized career pathway.

14.
Nano Res ; 13(2): 485-495, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33154805

RESUMO

Fluorescence microscopy is the method of choice for studying intracellular dynamics. However, its success depends on the availability of specific and stable markers. A prominent example of markers that are rapidly gaining interest are nanobodies (Nbs, ~ 15 kDa), which can be functionalized with bright and photostable organic fluorophores. Due to their relatively small size and high specificity, Nbs offer great potential for high-quality long-term subcellular imaging, but suffer from the fact that they cannot spontaneously cross the plasma membrane of live cells. We have recently discovered that laser-induced photoporation is well suited to deliver extrinsic labels to living cells without compromising their viability. Being a laser-based technology, it is readily compatible with light microscopy and the typical cell recipients used for that. Spurred by these promising initial results, we demonstrate here for the first time successful long-term imaging of specific subcellular structures with labeled nanobodies in living cells. We illustrate this using Nbs that target GFP/YFP-protein constructs accessible in the cytoplasm, actin-bundling protein Fascin, and the histone H2A/H2B heterodimers. With an efficiency of more than 80% labeled cells and minimal toxicity (~ 2%), photoporation proved to be an excellent intracellular delivery method for Nbs. Time-lapse microscopy revealed that cell division rate and migration remained unaffected, confirming excellent cell viability and functionality. We conclude that laser-induced photoporation labeled Nbs can be easily delivered into living cells, laying the foundation for further development of a broad range of Nbs with intracellular targets as a toolbox for long-term live-cell microscopy.

15.
Immunity ; 53(3): 641-657.e14, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888418

RESUMO

Metabolic-associated fatty liver disease (MAFLD) represents a spectrum of disease states ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs), are suggested to play important roles in the pathogenesis of MAFLD through their activation, although the exact roles played by these cells remain unclear. Here, we demonstrated that KCs were reduced in MAFLD being replaced by macrophages originating from the bone marrow. Recruited macrophages existed in two subsets with distinct activation states, either closely resembling homeostatic KCs or lipid-associated macrophages (LAMs) from obese adipose tissue. Hepatic LAMs expressed Osteopontin, a biomarker for patients with NASH, linked with the development of fibrosis. Fitting with this, LAMs were found in regions of the liver with reduced numbers of KCs, characterized by increased Desmin expression. Together, our data highlight considerable heterogeneity within the macrophage pool and suggest a need for more specific macrophage targeting strategies in MAFLD.


Assuntos
Células da Medula Óssea/citologia , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Osteopontina/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Desmina/metabolismo , Feminino , Células de Kupffer/citologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Transcriptoma/genética
16.
Nat Commun ; 11(1): 771, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034132

RESUMO

The recent advent of 3D in electron microscopy (EM) has allowed for detection of nanometer resolution structures. This has caused an explosion in dataset size, necessitating the development of automated workflows. Moreover, large 3D EM datasets typically require hours to days to be acquired and accelerated imaging typically results in noisy data. Advanced denoising techniques can alleviate this, but tend to be less accessible to the community due to low-level programming environments, complex parameter tuning or a computational bottleneck. We present DenoisEM: an interactive and GPU accelerated denoising plugin for ImageJ that ensures fast parameter tuning and processing through parallel computing. Experimental results show that DenoisEM is one order of magnitude faster than related software and can accelerate data acquisition by a factor of 4 without significantly affecting data quality. Lastly, we show that image denoising benefits visualization and (semi-)automated segmentation and analysis of ultrastructure in various volume EM datasets.

17.
mSphere ; 5(1)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024705

RESUMO

The determination of the exact location of a protein in the cell is essential to the understanding of biological processes. Here, we report for the first time the visualization of a protein of interest in Saccharomyces cerevisiae using focused ion beam scanning electron microscopy (FIB-SEM). As a proof of concept, the integral endoplasmic reticulum (ER) membrane protein Erg11 has been C-terminally tagged with APEX2, which is an engineered peroxidase that catalyzes an electron-dense deposition of 3,3'-diaminobenzidine (DAB), as such marking the location of the fused protein of interest in electron microscopic images. As DAB is unable to cross the yeast cell wall to react with APEX2, cell walls have been partly removed by the formation of spheroplasts. This has resulted in a clear electron-dense ER signal for the Erg11 protein using FIB-SEM. With this study, we have validated the use of the APEX2 tag for visualization of yeast proteins in electron microscopy. Furthermore, we have introduced a methodology that enables precise and three-dimensional (3D) localization studies in yeast, with nanometer resolution and without the need for antibody staining. Because of these properties, the described technique can offer valuable information on the molecular functions of studied proteins.IMPORTANCE With this study, we have validated the use of the APEX2 tag to define the localization of proteins in the model yeast S. cerevisiae As such, FIB-SEM can identify the exact 3D location of a protein of interest in the cell with nanometer-scale resolution. Such detailed imaging could provide essential information on the elucidation of various biological processes. APEX2, which adds electron density to a fused protein of interest upon addition of the substrate DAB, originally was used in mammalian studies. With this study, we expand its use to protein localization studies in one of the most important models in molecular biology.


Assuntos
Sistema Enzimático do Citocromo P-450/ultraestrutura , Imageamento Tridimensional/métodos , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Esferoplastos/ultraestrutura , Parede Celular/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Microscopia Eletrônica de Varredura , Saccharomyces cerevisiae/fisiologia
18.
EMBO Rep ; 21(1): e49755, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31840417

RESUMO

Core facilities offer visiting scientists access to equipment and expertise to generate and analyze data. For some projects, it might however be more efficient to collaborate remotely by sending in samples.


Assuntos
Serviços Postais
19.
Immunity ; 51(4): 638-654.e9, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31561945

RESUMO

Macrophages are strongly adapted to their tissue of residence. Yet, little is known about the cell-cell interactions that imprint the tissue-specific identities of macrophages in their respective niches. Using conditional depletion of liver Kupffer cells, we traced the developmental stages of monocytes differentiating into Kupffer cells and mapped the cellular interactions imprinting the Kupffer cell identity. Kupffer cell loss induced tumor necrosis factor (TNF)- and interleukin-1 (IL-1) receptor-dependent activation of stellate cells and endothelial cells, resulting in the transient production of chemokines and adhesion molecules orchestrating monocyte engraftment. Engrafted circulating monocytes transmigrated into the perisinusoidal space and acquired the liver-associated transcription factors inhibitor of DNA 3 (ID3) and liver X receptor-α (LXR-α). Coordinated interactions with hepatocytes induced ID3 expression, whereas endothelial cells and stellate cells induced LXR-α via a synergistic NOTCH-BMP pathway. This study shows that the Kupffer cell niche is composed of stellate cells, hepatocytes, and endothelial cells that together imprint the liver-specific macrophage identity.


Assuntos
Células Endoteliais/fisiologia , Células Estreladas do Fígado/fisiologia , Hepatócitos/fisiologia , Células de Kupffer/fisiologia , Fígado/citologia , Macrófagos/fisiologia , Monócitos/fisiologia , Animais , Comunicação Celular , Diferenciação Celular , Células Cultivadas , Microambiente Celular , Feminino , Regulação da Expressão Gênica , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Notch/metabolismo
20.
J Vis Exp ; (150)2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31449237

RESUMO

This protocol allows for the efficient and effective imaging of cell or tissue samples in three dimensions at the resolution level of electron microscopy. For many years electron microscopy (EM) has remained an inherently two-dimensional technique. With the advent of serial scanning electron microscope imaging techniques (volume EM), using either an integrated microtome or focused ion beam to slice then view embedded tissues, the third dimension becomes easily accessible. Serial block face scanning electron microscopy (SBF-SEM) uses an ultramicrotome enclosed in the SEM chamber. It has the capability to handle large specimens (1,000 µm x 1,000 µm) and image large fields of view at small X,Y pixel size, but is limited in the Z dimension by the diamond knife. Focused ion beam SEM (FIB-SEM) is not limited in 3D resolution, (isotropic voxels of ≤5 nm are achievable), but the field of view is much more limited. This protocol demonstrates a workflow for combining the two techniques to allow for finding individual regions of interest (ROIs) in a large field and then imaging the subsequent targeted volume at high isotropic voxel resolution. Preparing fixed cells or tissues is more demanding for volume EM techniques due to the extra contrasting needed for efficient signal generation in SEM imaging. Such protocols are time consuming and labor intensive. This protocol also incorporates microwave assisted tissue processing facilitating the penetration of reagents, which reduces the time needed for the processing protocol from days to hours.


Assuntos
Microscopia Eletrônica de Varredura/métodos , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Varredura/instrumentação , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA